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Abstract

Explainable few-shot fine-grained image classification is an essential task to align AI with
human preferences by enabling precise recognition of subtle differences and providing expla-
nations for decisions. Existing supervised models often struggle in few-shot scenarios due
to their reliance on extensive labeled data, which is intractable to collect for customized
human preferences. Meanwhile, large vision-language models (VLMs) while robust in zero-
shot tasks, fail to capture the subtle difference required for fine-grained classification. In
this work, we introduce a novel approach that enhances AI alignment in both zero-shot and
few-shot fine-grained image classification by leveraging explainable prompt learning and
distribution alignment techniques. Specifically, we utilize pre-trained LLM to expand the
label space in a training-free manner, addressing the disparity between plain text and the
image-text corpus distributions. This is further enhanced by a few-shot learning pipeline
that incorporates prompt learning with a weighted distribution alignment mechanism be-
tween image and text representations for better alignment with human-like understanding.
The proposed approach not only addresses the limitations of current prompting techniques
but also enhances interpretability. Extensive experiments demonstrate the effectiveness of
our method and illustrate the interpretability of our descriptions.

1 Introduction

Fine-grained image classification is a fundamental task for aligning AI with human preferences, particularly
when the AI must focus on subtle differences between images and categories, such as distinguishing between
different species of birds or varieties of flowers. This capability is crucial for applications where precision and
sensitivity to detail are necessary, enabling AI to deliver outcomes that closely match human expectations.
Moreover, improving the AI’s ability to detect these subtle distinctions enhances its capacity to make deci-
sions that are more personalized and contextually appropriate. Equally important is the ability to explain
its classifications and decisions, providing transparency by helping users understand how and why specific
choices are made. This combination of precise classification and clear explanation is essential for ensuring
that AI systems align effectively with the user preferences.

Large Vision-Language Models (VLMs), such as CLIP (Radford et al., 2021), have demonstrated remarkable
capabilities in zero-shot image classification tasks, showcasing their potential in aligning AI systems with
complex human visual preferences. However, these models require finely engineered prompts to mitigate the
gap between text and image distributions. Despite the advancements in prompt learning methods (Zhou
et al., 2022b;a; Menon & Vondrick, 2023), which aim to refine prompts to better match specific image cate-
gories, significant challenges remain. Current discrete prompt learning approaches often fail to dynamically
align the image and text distributions for specific datasets, resulting in sub-optimal performance. Moreover,
soft prompting methods, such as COOP (Zhou et al., 2022b), lack the ability to provide explanations for
their reasoning processes, which is crucial for transparency and trust in AI applications.

Our research identifies a notable distribution discrepancy Sun et al. (2023) as depicted in Figure 1, which is
prevalent across both current prompt learning models and broader vision-language models. This misalign-
ment, not only between the text corpus and the image-text corpus but also directly within the image-text
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Plain text:
“An adult male chicken is 

called a rooster. Roosters are 

larger, usually more brightly 

colored, and have larger 

combs on top of their heads.”

Descriptions:
“crowing companion”

“early riser”

…

“feathered friend”

Image-text corpus:
“Rooster crowing in the 

morning sun.”

…

“Red and Black Rooster 

on Green Grass.”

Image distribution:

Figure 1: An illustration of the distribution
gap between images and different types of
texts. The coordinate represents the em-
bedding space. Each circle and ring repre-
sent their distributions. For example, the
white circle indicates the image distribu-
tion and the first outer ring represents the
image-text corpus distribution. The closer
to the origin, the more similar distributions
they have.

interactions, poses significant challenges for the performance and reliability of VLMs like CLIP. Addressing
this gap is essential for improving model performance and ensuring that AI systems can effectively interpret
and align with human needs.

In order to jointly tackle those challenges inherent in diverse prompting techniques, we propose a novel
training-free strategy to minimize the shift in text distribution between plain text and image-text corpus.
We first leverage the latent knowledge inherent in LLMs, such as GPT (Brown et al., 2020), to mitigate
the distribution shift between the text corpus and the image-text corpus. These models have demonstrated
remarkable capabilities in generating various texts, making them promising candidates for effectively miti-
gating the distribution gap between various of texts. Thus, we design a prompting method on GPT-4 and
GPT-4o, enabling them to generate semantic descriptions related to designated labels, while maintaining
similarity to the image-text corpus that aligns with the distribution of the image-text model.

Furthermore, we present a few-shot weighted strategy incorporating a soft prompt learning methodology to
further mitigate the distribution discrepancy between text and images. This approach adjusts the prompt
weights based on their relevance to the target domain, ensuring a better alignment of the distributions and
improving classification performance.

In summary, our contributions can be summarized as follows: (1) We design a zero-shot training-free strat-
egy to generate descriptions that are interpretable and beneficial for image-text retriever. (2) We propose
a framework that learns soft prompts dynamically aligning image and text distribution while preserving
interpretability. (3) The extensive experiments show the effectiveness and interpretability of our method,
providing insights that can be universally applied to enhance future model designs and training paradigms.

2 Related Work

2.1 Large Vision-Language Models

Large pre-trained models recently show great potential in representation learning, which have greatly ad-
vanced many downstream applications in natural language understanding and computer vision. Following
the seminal work Transformer (Vaswani et al., 2017), many generative AI models emerge rapidly. The GPT
series models (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023; Touvron et al., 2023) have shown
their powerful ability in text mining and reasoning. There are also many methods (Menon & Vondrick, 2023;
Wei et al., 2021) that try to leverage the reasoning ability to improve downstream tasks. However, large
language models are always trained on pure text data from Internet, so it is hard to align image distribu-
tions. On the other hand, large vision-language models (Radford et al., 2021; Li et al., 2022; 2023; Rombach
et al., 2022; Jia et al., 2021; Singh et al., 2022; Liu et al., 2023; Chen et al., 2024; Yang et al., 2024) are
able to bridge the images and texts in the latent space. Particularly, CLIP (Radford et al., 2021) is trained
from a large set of image-text pairs, and it successfully mitigates the distribution discrepancy between text
and images with the contrastive loss. It also shows tremendous zero-shot ability on the image classification
task. However, its classification ability is highly dependent on the enormous training data. CLIP (Radford
et al., 2021) takes the advantages of selected 400 million image-text pairs (Schuhmann et al., 2021), while
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Figure 2: The overview of our proposed framework. Except for the learnable prompts Vp, Vq, and the
learnable weights W , all other models, including GPT, GPT-4o, Text Encoder, are fixed. D denotes the text
embedding genereated by text encoder, and H represents the weighted text embedding, and C denotes the
category. m is the number of categories and n is the number of descriptions for each category. I represents
the image embedding of a testing image. Initially, GPT and GPT-4o are prompted to generate descriptions
for each category. We then learn soft prompts and learnable weights based on these descriptions to align the
text distribution more closely with the image distribution, using the contrastive loss as a measure.

ALIGN (Jia et al., 2021) takes 1.8 billion noisy image-text pairs. This training paradigm is largely depen-
dent on training data. In other words, if the training data cover the specific domain, such as animals, food,
or daily appliances, the model can perform well. However, when it comes to some unseen or uncommon
domains, such as handwriting digits or medical images, the model would have quite poor performance. It
reveals that even in large pre-trained models, it still has the domain gap issue. To address that issue, we
come up with a method which leverages the reasoning ability of large language models and vision language
models to generate some descriptions that have semantic information, like features, alias, and some related
concepts. In this way, it can mitigate the distribution shift between plain text category and image-text
corpus, which is better aligned with the CLIP model distribution.

2.2 Prompt Learning

Prompt learning involves the creation of prompts that guide language models to better comprehend and
respond to questions. The essence of prompt learning is to leverage the context-aware nature of language
models, especially large pre-trained models like GPT, by providing a structured context that directs the
model’s generation capabilities towards a desired output. However when only a small amount of task-
specific data is available, prompt learning emerges as an alternative where the model is given a prompt that
includes instructions or an example of the desired task, effectively converting various NLP tasks into a text
completion problem.

While prompt learning achieves great performance on model tuning and downstream tasks, it is still underex-
plored in computer vision and visual language modeling. Pre-trained visual language models are incorporated
with text information, and according to recent work (Radford et al., 2021; Zhou et al., 2022b; Wang et al.,
2023b; Udandarao et al., 2023; Ge et al., 2023; Chen et al., 2023; khattak et al., 2023), the text prompt also
makes a difference in image classification. To exploit text prompts in the classification problem, discrete
prompts (Zang et al., 2022; Radford et al., 2021; Menon & Vondrick, 2023) are adopted to infer domain-
specific knowledge. However, those methods may meet the suboptimal issue, which may not align with the
specific domain distribution. To address this problem, some soft prompt learning methods (Zhou et al.,
2022b;a; Hantao Yao, 2023; Lu et al., 2022; Zhu et al., 2022; Gao et al., 2024; Zhang et al., 2022; Chen
et al., 2022; Wang et al., 2023a; Yu et al., 2025; Shi et al., 2025; Xiao et al., 2025; Li et al., 2025; Zhu et al.,
2025) have been proposed. They take a few image samples to guide the text prompt to align with the image
distribution. For example, CLIP-adapter (Gao et al., 2024) adapts both image and text embeddings to a
new embedding space. Xiao et al. (2025) propose a test-time prompt tuning method that enhances zero-shot
generalization in vision-language models. DePT Zhang et al. (2024) decouples base specific knowledge from
feature channels into an isolated feature space during prompt tuning. CoPrompt Roy & Etemad (2023)
enforces the prediction consistency of the trainable and pre-trained models to prevent overfitting on the
downstream task. COOP (Zhou et al., 2022b) is the most related work to ours, which expands the labels
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Figure 3: Illustration of how our descriptions work.
(a) The original image-text retrieval solution is
shown, where two images from different categories
may have similar or even reversed similarity scores
with their respective labels. For instance, an im-
age of a rooster may have the same similarity score
with both rooster and hen. (b) To address this is-
sue, we expand the labels using their features, aliases,
and concepts, leveraging prior knowledge and a closer
image-text distribution. This approach leads to a
higher error-tolerant rate, ultimately resulting in im-
proved classification performance.

with several learnable prompts and optimizes them with few-shot image samples. However, discrete prompt
learning methods may face the sub-optimal problem, while soft prompt learning methods have very lim-
ited interpretability. To overcome these issues, we propose a new method which jointly learns soft prompts
while preserving the interpretability. We first generate some descriptions by a large language model that
provides the prior knowledge and mitigates the pure text distribution and image-text distribution. Fur-
thermore, we learn soft prompts to mitigate the distribution discrepancy between image distributions and
text distributions. In this case, our method can preserve the prior knowledge of descriptions and provide
explanations.

3 Approach

In this section, we first briefly introduce our motivation and the overview of our framework, which is il-
lustrated in Figure 2. Then we present the technical details of our model in three main parts, including
generating descriptions, prompt tuning, and weighted aggregation.

3.1 Overview

Our objective is to enhance image classification using existing large pre-trained model while simultaneously
delivering interpretable explanations. To accomplish this, we introduce our framework, illustrated in Figure 2.
This framework consists of two principal components. The first part is static description generation, which
leverages the reasoning ability of large language models, such as GPT-4 (OpenAI, 2023) and GPT-4o to
provide semantic description while aligning text distributions. The other part is the prompt learning pipeline.
With the prior knowledge provided by the large language model, few-shot images further guide the learnable
prompts and learnable weights to adapt the description distribution to align with the image distribution.

3.2 Generating Descriptions

Although the CLIP model shows its strong zero-shot ability, it still has domain bias due to the training
data (Radford et al., 2021). Specifically, the distribution shift not only happens between images and texts,
but also exists in natural languages. For example, a lot of natural language fine-grained categories, such
as textures, landscapes, are less likely to appear in image-text corpus. The fact that the image-text corpus
often comprises a higher frequency of keywords and a diminished occurrence of formal sentence structures
reflects the distribution gap. (Schuhmann et al., 2021) In order to address the text distribution shift issue,
we broaden the scope of labels by encompassing multiple descriptions which are more similar to image-text
corpus and impart prior knowledge by leveraging the reasoning and generative ability of large language
models. Figure 3 illustrates the expanding details.

Given a particular category, our approach involves harnessing the capabilities of large language models to
generate a set of text descriptions, denoted as D. These descriptions enrich the label information and match
the distribution found in the image-text corpus. This process can be formulated as: Dc = g(c), where g()

4



Under review as submission to TMLR

represents any generic large language models, and Dc refers to the descriptions regarding the category c.
Descriptions will be used to enhance the effectiveness of the visual language classification model.

Basically, we use LLMs to conclude several common phrases that typically appear in image-text corpus.
Inspired by the prompt work (Menon & Vondrick, 2023), we design a text prompt to guide GPT-4 to
generate related descriptions as:

Q: Conclude the common phrases in image-text pairs corpus that describe a {category}.
A: Some of the most common phrases used to describe a {category} include:

For the possible few-shot images, we leverage the GPT-4o model to generate image features directly.

Furthermore, it is essential to anchor the generated descriptions to their corresponding labels. This is
especially crucial in fine-grained classification tasks, where a single description might be applicable to multiple
closely related categories. For example, “man’s best friend” or “ four legs” can describe all fine-grained animal
categories, like different dogs and cats. Thus, to narrow its meaning, we formulate a training-free zero-shot
prompt as “an image of [class], which relates to [description].”

3.3 Prompt Tuning

In our Prompt Tuning module, we aim to generate soft prompts for a set of images X that can effectively
bridge the domain gap between text and image distributions. Meanwhile, it should align with the latent
distribution of CLIP. Consequently, as illustrated in Figure 2, we propose a description-based prompt tun-
ing framework to reduce the distribution gap between the generated descriptions and images in a specific
domain. Specifically, we introduce two soft prompts Vm, Vn for the category label and its descriptions, re-
spectively. Inspired by (Zhou et al., 2022b;a; Hantao Yao, 2023), we use the unified prompt for all classes
and descriptions, which shares the soft prompts across all descriptions. The prompt is designed as:

t = [Vp][class][Vq][description], (1)

where Vp is the class soft prompt and Vq is the description prompt. Each v ∈ {Vp, Vq} has the same
dimension as the word embedding. Vp and Vq have p and q soft prompts, respectively, where p and q are
hyperparameters. In particular, each t corresponds only to a single description.

Formally, we define the texture embedding encoded by the CLIP text encoder θ as Dci = θ(tci), where
c ∈ [0, m] refers to the class and i ∈ [0, n] refers to the description i corresponding to c. Additionally, m
is the number of categories and n is the number of descriptions of one specific category. In this way, each
prompted description will have one unique text embedding.

3.4 Weighted Aggregation

Existing works (Zhou et al., 2022b;a; Hantao Yao, 2023) primarily focus on prompting labels within a single
text embedding. Nevertheless, our approach differs because we deal with scenarios where a single class could
be described in multiple ways. This necessitates the aggregation of these description embeddings into a
single class embedding to compute similarity scores with image embeddings.

However, descriptions are typically generic and might not align perfectly with all images across different
domains or datasets. Therefore, a simple averaging of all descriptions could still introduce significant domain
shift. In this case, we further mitigate the distribution difference between text descriptions and image
distributions, specifically focusing on the few-shot target domain images denoted as X.

We propose enhancing category representation by emphasizing the precise text descriptions that have a
high correlation with the image-text corpus. This allows us to compute a more accurate and interpretable
similarity score for a category via weighted summation.

In other words, we introduce a learnable weight matrix W = Rm∗n as shown in Figure 2. The weight matrix
has the same dimension as the description embedding matrix. To aggregate the description embeddings into
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Average DTD Food101 OxfordPets
model CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours
RN50 51.2 51.8 52.8 40.3 38.6 42.0 74.5 74.9 76.8 82.2 81.8 83.2

VITB32 55.3 55.7 56.8 43.8 43.1 45.5 78.3 78.9 80.3 83.0 84.9 85.5
VITB16 59.5 60.4 61.2 44.4 46.3 46.9 85.2 84.3 85.9 86.9 86.6 87.3

Imagenet Flower102 FVGCAircraft EuroSAT
model CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours
RN50 58.2 58.9 59.5 60.5 63.1 63.8 17.00 17.3 17.6 25.5 28.2 26.5

VITB32 61.8 62.8 63.1 63.5 64.1 66.1 18.6 19.4 19.3 38.4 36.6 38.0
VITB16 67.4 67.7 68.3 68.6 69.7 71.5 23.0 23.1 24.3 40.9 45.4 44.2

Table 1: Comparison of our training free model with two baselines. We test our model on 7 datasets with
3 CLIP backbones. Our results show consistent improvement across all settings. The number indicates the
image classification accuracy. The best results are shown in bold.

category embeddings, we perform a weighted summation as follows:

Hc =
n∑
i

Dci × Wci∑n
k=1 Wck

, (2)

where D is the description embeddings and W is the weight matrix. Once we obtain the category embeddings
H, we are able to calculate the similarity of images and texts and reduce the contrastive loss:

Lcon = −
∑
x∈X

log
exp(ϕ(Hcx

, x))∑m
i=1(exp(ϕ(Hci

, x))
, (3)

where cx is the true category of the image x, m is the number of categories, and ϕ() represents the similarity
score of text embeddings and image embeddings. The similarity score of the correct category should be
higher than that of other categories.

4 Experiments

In this section, we first introduce the experimental settings. Then we evaluate our approach in the following
four problem settings: 1) evaluating the quality of descriptions; 2) training-free zero-shot image classification;
3) few-shot prompt tuning image classification; 4) evaluating the explainable results.

4.1 Datasets and Settings

Datasets We employ 7 publicly available image classification datasets: Imagenet (Deng et al., 2009) Ox-
fordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014),
FGVCAircraft (Maji et al., 2013), DTD (Cimpoi et al., 2014), and EuroSAT (Helber et al., 2019). These
datasets constitute a comprehensive benchmark, which covers a diverse set of image distributions. For ex-
ample, Food101, Flower102, and OxfordPets have images that are very common in daily life and dominant
in CLIP training distributions. In addition, FGVCAircraft, DTD, and EuroSAT are less likely to appear in
CLIP distributions and result in poor zero-shot performance. Imagenet, however, covers generic objects and
fine-grained categories, which has a comprehensive neural distribution. Since we have distinctive descriptions
for each class, the base-to-new setting cannot be applied for our models.

Baselines We compare our method with six existing baselines, including two zero-shot baselines and four
prompt-tuning baselines. The zero-shot baselines are zero-shot CLIP (Radford et al., 2021) and CBD (Menon
& Vondrick, 2023). Zero-shot CLIP (Radford et al., 2021) is the original CLIP model. For a fair comparison,
we adopt the standard handcraft prompt as “an image of a [CLASS]”. Since our method can be performed
in the training-free setting, we compare our training-free version with these two training-free baselines.
Additionally, the prompt tuning baselines are linear probe CLIP, COOP (Zhou et al., 2022b) COCOOP (Zhou
et al., 2022a) and CLIP-Adapter Gao et al. (2024).
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Figure 4: Examples of generated descriptions. We manually divided them into three types, namely features,
alias, related concepts, which are shown in yellow, green, and black.
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Figure 5: Main results of few-shot setting of our model on 7 datasets. We use RN50 as the CLIP backbone.
Overall, our method can outperform other baselines. Comparing with the closest rival coop, we consistently
outperform it over all datasets.

4.2 Implementation Details

For the description generation, we use GPT-4 and GPT-4o (OpenAI, 2023) to generate descriptions. For
the prompt tuning and weighted aggregation method, we adopt 1/2/4/8-shot learning. We set m, n as 4, so
we have 8 shared learnable soft prompts. We initialize our learnable prompts by drawing from a zero-mean
Gaussian distribution with standard deviation equal to 0.02. SGD is adopted as the optimizer, and an initial
learning rate is set as 0.002, which is decayed by the cosine annealing rule. we use the warm-up trick by
fixing the learning rate to 1e-5, as suggested in (Zhou et al., 2022b), only for the first epoch. We train 200
epochs for other datasets and 50 for Imagenet. To validate the generalization ability, we test our model on
three CLIP backbones, RN50, VITB32, and VITB16. Our model is trained on an Nvidia A5000 GPU.

4.3 Description Generation

Figure 4 illustrates a selection of generated descriptions that span both frequent domains, such as ani-
mals, and less common domains, such as describable textures and fine-grained aircrafts. In studying these
descriptions, we classified them into three main types: features, aliases, and related concepts.

The feature type encapsulates both visual and non-visual attributes pertinent to a category. They provide
supplementary information that can facilitate a more comprehensive understanding of categories for the CLIP
model. For instance, descriptions such as “shattered lines”, “jagged edges”, “cracked lines”, and “cracked
surface” pertain to the “crack” texture, capturing nuances related to the appearance of edges, the pattern
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We don’t predict chequered because:

Average:   23.62060546875

checkered flag  25.078125

classic game board 24.890625

geometric motif  24.859375

classic design  24.0

black white squares 23.890625

bold pattern  23.09375

iconic look   22.734375

timeless style  22.34375

eye-catching look 21.75

True: grid

Ours: grid

CLIP: chequered

We predict grid because:

Average:   24.51

criss-cross   25.95

tic-tac-toe   25.70

lattice   25.39

checkerboard  25.25

honeycomb  24.58

network   23.86

web    23.84

square array  23.09

matrix   22.98

True: highway or road

Ours: highway or road

CLIP: permanent crop land

We predict highway or road because:

Average:   

long stretch  23.6875

winding path  23.34375

smooth sailing  22.984375

winding curves  22.875

scenic route  22.578125

asphalt highway  22.515625

busy boulevard  22.390625

highway to adventure 22.125

endless journey  21.640625
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Average:   

irrigated fields  22.515625

permanent crops  22.359375

productive land  22.03125

cultivated land  21.953125

arable land   21.796875

crop rotation  21.734375

farmed land  21.6875

sustainable farming 21.484375

fertile soil   21.453125

We predict tiger because:

Average:   26.3916015625

striped hunter  27.21875

big cat   26.984375

wild cat   26.859375

orange and black  26.265625

stealthy stalker  26.21875

fierce feline   26.171875

roaring giant  26.078125

king of the jungle  25.90625

powerful predator 25.734375

True: tiger

Ours: tiger

CLIP: tiger shark

We don’t predict tiger shark because:

Average:   22.55859375

striped menace  23.578125

striped terror  23.46875

fierce hunter  23.125

powerful swimmer 22.625

oceanic giant  22.515625

oceanic hunter  22.234375

majestic hunter  22.140625

toothy terror  22.0

apex predator  21.3125

Figure 6: Examples of predictions from our training-free, zero-shot model (left, blue) and the CLIP model
(right, grey). We provide visual comparisons of predictions from both CLIP and our models, with the
ground truth labels presented beneath the corresponding images. The bar charts on the right illustrate the
descriptions corresponding to each category, along with the similarity scores for these descriptions. Our
predictions demonstrate accuracy, and the similarity scores for the descriptions provide evidence to support
this claim, detailing why our model avoids selecting incorrect labels. These results also show that descriptions
are beneficial to close the gap between images and texts.

of cracks, and the overall surface manifestation. This detailed feature helps the CLIP model understand
the composition and semantics of a category. The alias type incorporates alternate terminology that is
likely to appear in the image-text corpus. This broadens the label into multiple anchors, fostering a more
comprehensive understanding. To illustrate, “707-320” refers to a specific aircraft model; however, without
context, it could be misunderstood as a sequence of numbers or even a telephone number. By introducing
aliases such as “iconic airliner” or “pioneering jet”, we provide additional anchors, thus reducing potential
misinterpretations by the CLIP model. Lastly, the related concept type includes common concepts that
frequently occur in the image-text corpus. For example, a “rooster” is often associated with a “barnyard”.
This association allows the model to leverage the additional context provided by these concepts. In sum,
our generated descriptions provide higher level interpretability and have closer distribution to image-text
corpus, facilitating the CLIP model in better understanding and classifying images.

4.4 Training-free Zero-shot Image Classification

In the training-free setting, the weights of each description are the same, so each description will equally con-
tribute to the classification. For each category, it has 9 to 10 descriptions. For each description, we construct
the zero-shot prompt template as “an image of [CLASS], which relates to [DESCRIPTION].” We compare
our model with two baseline models, namely CLIP (Radford et al., 2021) and CBD (Menon & Vondrick,
2023), across three different architectures: RN50, VITB32, and VITB16. From the Table 1, we can observe
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that our training-free model consistently surpasses the performance of both baseline models across nearly
all configurations and datasets. Specifically, our method showcases a consistent 3-5% improvement over the
CLIP model, and also achieves 1-3% enhancement over CBD (Menon & Vondrick, 2023). Specifically, for
certain datasets such as DTD (Cimpoi et al., 2014) and flower (Nilsback & Zisserman, 2008), our method
has an improvement of around 6%. This consistent improvement suggests that augmenting prior knowledge
and bringing the image-text distribution closer can promote image-text alignment in the CLIP embedding
space, leading to superior image classification accuracy. Additionally, our method exhibits notable improve-
ments in the fine-grained and less common domains such as flowers and descriptive textures. In contrast,
more prevalent domains like pets show relatively smaller enhancements. This suggests that our approach
effectively applies across diverse image domains. For categories characterized by larger domain gaps, our
method assists the CLIP model in comprehending semantic information by attenuating the domain shift.
Conversely, for more popular categories, the benefits of our approach may be marginal, as these categories
inherently align closely with the image distribution. These observations substantiate our hypothesis that the
prediction accuracy of VLMs is significantly influenced by the domain gap.

4.5 Few-shot Fine-grained Image Classification

In the few-shot domain prompt tuning setting, our objective is to further mitigate the distribution gap
between images and descriptions, as there may exist some misalignment between them. To evaluate the
effectiveness of our approach, we conducted experiments on seven different types of dataset, each representing
a distinct image distribution. The results, as shown in Figure 5, consistently confirm the superior performance
of our model over the most challenging rival CoCOOP across all settings. Specifically, we have around
2% average improvement to CoCOOP. However, CoCOOP outperforms our method on FGVCAircraft and
Flower102 dataset with 16-shot experiments. It is expected since these labels are very similar providing
little information, and the image specific prompt learning method could alleviate the problem. However,
with the weighted aggregation strategy, the image distributions can better align with each label distribution
and achieve better performance with respect to the average performance. This outcome reinforces that
our techniques of description generation and reweighting mechanism facilitate alignment between text and
image distributions within the CLIP latent embedding space. Remarkably, our method exhibits even greater
improvements on fine-grained and uncommon image datasets, such as DTD, and EuroSAT, compared to
popular image datasets. This observation highlights the robustness of our approach when dealing with
significant distribution discrepancies. This implies that our model effectively leverages prior knowledge and
aligns distributions more accurately, enabling enhanced performance on datasets with larger distribution
gaps.

4.6 Explainable Qualitative Results

Since we have incorporated additional textual descriptions, we can interpret predictions based on the sim-
ilarity between each description and the image. Figure 6 provides illustrative examples in different image
types. We showcase some images from various domains including texture images (Cimpoi et al., 2014),
satellite images (Helber et al., 2019), and animal images (Deng et al., 2009). These examples demonstrate
how additional information influences the final decision.

Consider an instance from the prevalent animal domain, where we encounter an image of a tiger. In the
original CLIP model, the prediction might be incorrect due to the similarities between a tiger and a tiger shark
at the textual level. However, by expanding the label with descriptions, CLIP gains a better understanding
of the actual label. As we can see in the examples, descriptions of “striped hunter,” “big cat,” and “wild cat”
exhibit relatively higher similarity to the image, correctly indicating the animal’s classification as a tiger. In
contrast, descriptions associated with the tiger shark, such as “oceanic,” result in a lower similarity to the
image, correctly distinguishing it as a different category.

On the other hand, as for the uncommon domains, our descriptions also provide some precise information.
For example, the “criss-cross” show the features of the grid texture and meanwhile using the image-text
manner to describe it. As a result, it obtains the highest similarity score, and thus helps the model to make
the right prediction.

9
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Figure 7: Example weights for the Food-101, DTD and EuroSAT datasets in the 1-shot setting. Each cell
corresponds to one description. Specifically, each row represents a category, and typically, each category has
nine descriptions. The darker the cell, the greater the weight, reflecting the importance of the description
in distinguishing the category.

These examples demonstrate how our approach enables CLIP to consider multiple pieces of evidence to make
more accurate predictions. By leveraging descriptions and expanding the label space, CLIP gains a deeper
insight into the visual content and context, allowing for improved classification performance across various
types and domains of images.

4.7 Explainable Weighted Aggregation

The heatmap shown in Figure 7 illustrates the varying levels of importance among different descriptions,
highlighting the effectiveness of our weighted aggregation module. The most critical descriptions are pre-
dominantly found on the right side of the heatmap, which aligns with the caption descriptions. This pattern
indicates a strong link between the textual captions and the visual distribution of images, which plays a
significant role in determining classification confidence. However, the general descriptions associated with
uncommon datasets and categories carry smaller weights, indicating that these descriptions are less signifi-
cant and may overlap with those of other categories. In addition, the weights assigned to the descriptions
provide insight into the distinctive features and distributions unique to each category in the dataset. For
example, in the EuroSAT dataset, descriptions like "rectangular shapes" and "pinkish color tones" are keys
to identifying annual crop land, whereas a "dark background" is a significant indicator of the forest cate-
gory. This aspect underscores its explainability, offering users a clear understanding of how it discerns and
categorizes images. It also proves that the description is capable of aligning the image distribution.

4.8 Robustness Evaluation

We evaluate the robustness of our model using three different CLIP backbones: RN50, VITB32, and
VITB16. To assess its generalization ability on uncommon domains, we test it on three fine-grained datasets:
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), and FGVCAircraft (Maji et al., 2013). The re-
sults, presented in Table 2, highlight the consistent improvements achieved by our model. Across all datasets
and backbone architectures, our method outperforms both the baseline CLIP and COOP models. Specif-
ically, on DTD, our model achieves a performance gain of up to 7.3% over COOP when using RN50. A
similar trend is observed for VITB32 and VITB16, where our method improves over COOP by 4.4% and
2.5% on average, respectively. Similarly, for EuroSAT, our model significantly outperforms baselines. In
the challenging FGVCAircraft dataset, where fine-grained differences among classes make classification par-
ticularly difficult, our model again consistently outperforms baselines. For example, with RN50 and 8-shot
training, our approach improves over COOP by 10.5%. Notably, on VITB16, our method shows the largest
gain, reaching an improvement of 19.3%. Compared to the baseline CLIP model, our model demonstrates
a considerable improvement in performance, validating our model’s domain adaptation capability. The rel-
atively poor performance of the CLIP model illustrates the substantial distribution discrepancy between
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DTD EuroSAT FVGCAircraft
model shots CLIP COOP Ours CLIP COOP Ours CLIP COOP Ours

RN50

1 40.30 42.07 44.97 25.50 54.40 55.30 17.00 17.03 18.50
2 40.30 45.03 48.33 25.50 61.07 64.37 17.00 18.87 20.60
4 40.30 52.27 54.67 25.50 68.77 71.43 17.00 20.26 22.40
8 40.30 58.07 59.73 25.50 73.37 77.27 17.00 21.30 23.53

VITB32

1 43.80 44.87 47.80 38.40 51.33 54.63 18.60 20.26 20.80
2 43.80 48.07 50.07 38.40 60.57 62.47 18.60 21.23 22.53
4 43.80 54.17 55.57 38.40 69.90 70.67 18.60 22.80 26.37
8 43.80 59.87 61.20 38.40 74.40 75.50 18.60 23.90 28.26

VITB16

1 44.40 47.26 49.53 40.90 55.03 56.57 23.00 27.46 25.50
2 44.40 53.13 54.83 40.90 66.13 66.36 23.00 28.67 29.73
4 44.40 59.03 59.30 40.90 74.07 74.80 23.00 29.43 33.40
8 44.40 63.90 65.03 40.90 77.97 77.00 23.00 32.20 38.43

Table 2: Comparison of our prompt tuning model on few-shots settings with COOP (Zhou et al., 2022b).
We test our model on three major uncommon datasets with three CLIP backbones to validate our robustness
and effectiveness. Compared to baselines, our results show consistent improvement across all settings. The
number indicates the image classification accuracy. Higher is better. The best results are shown in bold.

Dataset method 1shot 2shot 4shot 8shots

DTD

CLIP 40.30 40.30 40.30 40.30
descrption 42.00 42.00 42.00 42.00
descrption+prompt 44.33 48.07 54.00 57.83
descrption+prompt+weight 44.97 48.33 54.67 58.07

EuroSAT

CLIP 25.50 25.50 25.50 25.50
descrption 26.50 26.50 26.50 26.50
descrption+prompt 54.96 62.46 70.93 77.06
descrption+prompt+weight 55.30 64.37 71.30 77.27

FVGCAircraft

CLIP 17.00 17.00 17.00 17.00
descrption 19.60 19.60 19.60 19.60
descrption+prompt 18.30 20.40 21.90 23.53
descrption+prompt+weight 18.50 20.60 22.40 25.26

Table 3: Ablation study of each components.

images and texts. These consistent improvements across various domains demonstrate our model’s ability to
effectively bridge the distribution gap between images and textual descriptions through learnable prompts,
even in cases where the discrepancy is huge. Furthermore, our model surpasses the performance of the
related baseline model, showcase the efficacy of our weighted strategy. The consistent improvements across
domains validate the robustness of our method in diverse and challenging environments.

4.9 Ablation Study

We conduct an ablation study to evaluate the impact of each component in our method. The results in
Table 3 show that each component progressively enhances performance.

From the experiments, we observe that each component has a positive impact on the classification. For
example, for the DTD dataset, the base method (CLIP) achieved a consistent score of 40.30 across all shots.
Adding a description component improves the score slightly to 42.00. The addition of a prompt to the
description further increases the performance significantly, reaching 44.33, 48.07, 54.00, and 57.83 for 1-shot,
2-shot, 4-shot, and 8-shot learning, respectively. By adding a weight component to the description+prompt,
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we observe the best performance of 44.97, 48.33, 54.67, and 58.07 for 1-shot, 2-shot, 4-shot, and 8-shot
learning, respectively. A similar trend is observed in EuroSAT and FGVCAircraft, the introduction of
prompts leads to significant gains and the weighted approach further refines performance. In summary,
the addition of a “description”, “prompt”, and “weight” components consistently improved the performance
across all datasets and learning scenarios. This demonstrates the effectiveness of each component in our
proposed method.

4.10 Effect of the number of descriptions

In this section, we analyze the impact of the number of descriptions on the performance of the proposed
method across three different datasets: DTD, EuroSAT, and FVGCAircraft. The results are summarized in
the Table 4.

Dataset # descriptions 1-shot 2-shot 4-shot 8-shot
3 40.20 47.07 53.10 57.33

DTD 6 42.70 48.23 53.97 57.77
9 44.97 48.33 54.67 58.07
3 54.30 61.57 70.77 75.20

EuroSAT 6 54.70 62.40 71.20 77.23
9 55.30 64.37 71.30 77.27
3 16.67 18.70 21.26 22.10

FVGCAircraft 6 17.10 19.80 21.90 25.00
9 18.50 20.60 22.40 25.26

Table 4: Results of effect of the number of descriptions.

For the DTD dataset, the performance with three
descriptions was 40.20, 47.07, 53.10, and 57.33 for
1-shot, 2-shot, 4-shot, and 8-shot learning, respec-
tively. Increasing the number of descriptions to six
led to a slight improvement in performance, with
scores of 42.70, 48.23, 53.97, and 57.77 for the re-
spective shot learning scenarios. The best perfor-
mance was achieved with nine descriptions, which
resulted in scores of 44.97, 48.33, 54.67, and 58.07.
Similar to the EuroSAT and FVGCAircraft dataset,
the performance improves slightly as descriptions in-
creases. In summary, increasing the number of de-
scriptions consistently improved the performance across all datasets and learning scenarios. This indicates
that using more descriptions can effectively enhance the accuracy of the proposed method in various few-shot
learning scenarios.

5 Limitation

While Language Learning Models (LLMs) exhibit impressive capability in generating semantic information,
there are nonetheless certain limitations that influence their outcome, particularly in the context of fine-
grained image classification. For example, when encountering classes that demand intricate descriptions,
LLMs occasionally fall short in generating meaningful descriptions. Instead, they tend to rendering generic
descriptions that offer minimal distinctive information for fine-grained categorization. For instance, in Ox-
fordPets dataset (Parkhi et al., 2012), around 20% categories have the description saying "man’s best friend"
which provide almost none additional information. One possible solution is providing additional contextual
information specific to the domain under consideration. By doing so, LLMs could potentially filter out redun-
dant descriptions, thereby enhancing their ability to generate more detailed and distinguishing descriptions.
The exploration of methods to improve LLMs’ performance in these more complex scenarios represents an
interesting direction for future research.

6 Conclusion

In this paper, we propose an improved prompting method for vision-language models, enhancing both
the accuracy and interpretability of few-shot fine-grained image classification. Specifically, we introduce
a novel framework for zero-shot classification that aligns vision-language models with domain-specific distri-
butions through soft prompt tuning and weighted aggregation. Extensive experiments on multiple benchmark
datasets demonstrate that our approach consistently outperforms baseline methods in classification accuracy
while maintaining interpretability. By leveraging interpretable descriptions, our model effectively bridges the
semantic gap between textual prompts and visual features, leading to improved domain alignment. The inte-
gration of weighted aggregation further refines this alignment, optimizing performance without compromising
interpretability.
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